My training and research interests lie in the intersection of ecology and multivariate analysis. My formal university education started with a Master’s degree on comparing the results of different multivariate methods when analyzing the fish and crustacean community structure of an estuary in Belgium. This thesis already included all the three aspects that will continue to play an important role in my research focus, aquatic environment, community ecology, and biostatistics. Since I wanted a more in-depth knowledge of statistics, I also completed a Master’s degree in Statistics. For my PhD research, I studied zooplankton community structure of interconnected ponds. In the different ponds of the “De Maten”, two opposing forces potentially shape local zooplankton community structure: different local environmental factors could lead to divergence of the zooplankton communities, while high dispersal rates could homogenize the connected communities (i.e. a metacommunity). My study investigated the relative influence of these local versus regional processes on local zooplankton community structure, diversity and dynamics. I used a complementary approach of both observational (coupled with specific multivariate statistics) and experimental data. I showed that both processes do occur, with local processes of primary importance, but with dispersal necessary to deliver the species adapted to different environmental conditions.

My postdoctoral research at the National Center for Ecological Analysis and Synthesis continued with these exiting metacommunity questions, i.e. how dispersal through space (but also through time) influences local community dynamics. For one project I applied the methodologies developed during my PhD study on 158 data sets from different environments, communities, spatial scales, and dispersal modes. I found that local environmental variables with or without an independent dispersal component were the driving forces in structuring local community structure. This also clearly indicated that neutral community dynamics alone, currently a hotly debated subject in ecology, was only important in 9% of the data sets. Other projects looked at how metacommunity dynamics change through time as cladoceran communities establish in new pools; temporal metacommunity dynamics in annual dessert plants (with dispersal through time the perfect time analogue of dispersal through space); spatial, temporal and environment processes at different trophic levels in marine kelp ecosystems in the Channel Islands Marine Reserve of the California coast; comparing different dispersal abilities in freshwater organisms (both lake and stream organisms such as fish, macroinvertebrates, zooplankton, perifyton…).

Karl’s University of Guelph page:

Karl’s Lab page: